Natriuretic peptide-dependent lipolysis in fat cells is a primate specificity.

نویسندگان

  • Coralie Sengenès
  • Alexia Zakaroff-Girard
  • Agnès Moulin
  • Michel Berlan
  • Anne Bouloumié
  • Max Lafontan
  • Jean Galitzky
چکیده

We have recently demonstrated that natriuretic peptides (NPs), which are known for regulation of blood pressure via membrane guanylyl cyclase (GC) receptors, are lipolytic in human adipose tissue. In this study, we compared the NP control of lipolysis in adipocytes from humans, nonhuman primates (macaques), rodents (rats, mice, hamsters), and nonrodent mammals (rabbits, dogs). Isolated adipocytes from these species were exposed to increasing concentrations of atrial NP (ANP) or isoproterenol (beta-adrenergic agonist). Although isoproterenol was lipolytic in all of the species, ANP only enhanced lipolysis in human and macaque adipocytes. In primate fat cells, NP-induced lipolysis involved a cGMP-dependent pathway. Binding studies and real-time quantitative PCR assays revealed that rat adipocytes expressed a higher density of NP receptors compared with humans but with a different subtype pattern of expression; type-A GC receptors predominate in human fat cells. This was also confirmed by the weak GC-activity stimulation and the reduced cGMP formation under ANP exposure in rat adipocytes compared with human fat cells. In conclusion, NP-induced lipolysis is a primate specificity, and adipocytes from ANP-nonresponsive species present a predominance of "clearance" receptors and very low expression of "biologically active" receptors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Natriuretic peptide-dependent lipolysis in fat cell is a primate specificity

We have recently demonstrated that natriuretic peptides (NPs), known for their regulation of blood pressure via membrane guanylyl cyclase (GC) receptors, are lipolytic in human adipose tissue. In this study we compared the NP control of lipolysis in adipocytes from man, non-human primates (macaque), rodents (rat, mouse, hamster) and non-rodent mammals (rabbit, dog). Isolated adipocytes from the...

متن کامل

Functional and pharmacological characterization of the natriuretic peptide-dependent lipolytic pathway in human fat cells.

A lipolytic pathway involving natriuretic peptides has recently been discovered in human fat cells. Its functional characteristics and the interactions of the atrial natriuretic peptide (ANP)-induced effects with adrenergic and insulin pathways were studied. Characterization of the action of ANP antagonists, i.e., A71915, anantin, S-28-Y (Ser-28-Tyr, a synthesized peptide), and HS-142-1 (a micr...

متن کامل

Control of lipolysis in intra-abdominal fat cells of nonhuman primates: comparison with humans.

The mechanisms that control lipolysis in intra-abdominal fat cells from various primate species, the marmoset (Callithrix jacchus), the baboon (Papio papio), and the macaque (Macaca fascicularis), were compared to those of human intraabdominal fat cells. Selective beta 1- or beta 2-adrenoceptor agonists induced lipolysis in all species. Selective beta 3-agonists (BRL 37344, CL 316243, and SR 58...

متن کامل

Adipocyte lipases and defect of lipolysis in human obesity.

The mobilization of fat stored in adipose tissue is mediated by hormone-sensitive lipase (HSL) and the recently characterized adipose triglyceride lipase (ATGL), yet their relative importance in lipolysis is unknown. We show that a novel potent inhibitor of HSL does not inhibit other lipases. The compound counteracted catecholamine-stimulated lipolysis in mouse adipocytes and had no effect on r...

متن کامل

Insulin/glucose induces natriuretic peptide clearance receptor in human adipocytes: a metabolic link with the cardiac natriuretic pathway.

Cardiac natriuretic peptides (NP) are involved in cardiorenal regulation and in lipolysis. The NP activity is largely dependent on the ratio between the signaling receptor NPRA and the clearance receptor NPRC. Lipolysis increases when NPRC is reduced by starving or very-low-calorie diet. On the contrary, insulin is an antilipolytic hormone that increases sodium retention, suggesting a possible ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 283 1  شماره 

صفحات  -

تاریخ انتشار 2002